Large cryogenic detectors

Inés Gil Botella

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Outline

- Large cryogenic TPC detector challenges
- ICARUS detector performance
- Short-baseline Neutrino Program at Fermilab
 - SBND, MicroBooNE & (new) ICARUS
- The LBL Neutrino Program at FNAL: the LBNF/DUNE project
 - Single-phase LAr TPC detector
 - Dual-phase LAr TPC detector
- ProtoDUNEs at the CERN Neutrino Platform
- Conclusions

Large cryogenic TPC challenges

Liquid Argon technology

- LAr TPC is the leading technology for future short/long-baseline accelerator neutrino oscillation experiments
- The LAr TPC technology provides:
 - excellent 3D imaging capabilities
 - few mm scale over large volume detector
 - excellent energy measurement capability
 - totally active calorimeter
 - particle ID by dE/dx, range, event topology, ...
 - scalability to large detectors
 - high signal efficiency and background discrimination

LAr TPC detection principle

- Charged particles ionize Ar; electrons drift to anode wires (~ms) and scintillation light gives the drift time
- 3D spatial reconstruction from wire planes
- Charge measurement by collection plane
- Absolute time from scintillation light signals

Large (~kton) LAr TPC challenges

1. Large cryogenic vessels

Very large LAr masses are needed

2. Liquid purification

Needed to ensure long drift path of ionization electrons without attenuation

3. High voltage systems

• 0.5-1 kV/cm drift field

4. Electronics and DAQ

Low noise electronics

5. Scintillation light detection

Long term performance

LAr experimental path

ICARUS at LNGS

The T600 ICARUS detector

ICARUS @LNGS Hall B

- 2 identical modules (T300)
- 3.6 x 3.9 x 19.6 m each
- LAr active mass: 476 ton
- Drift length = 1.5 m (1 ms)
- HV = -75 kV; E = 0.5 kV/cm

- 4 wire chambers
- 2 chambers per module
- Three non-destructive readout wire planes per chamber (at 0, $\pm 60^{\circ}$)
- 54000 wires, 3 mm pitch and plane spacing
- 74 8" PMTs for light detection

ICARUS performance

- ICARUS T600 detector is the largest operational LAr TPC built so far
- A single T300 module was tested at surface in Pavia in 2001
- ICARUS was deployed and operated from 2010 to 2013 at the underground LNGS exposed to the CNGS beam (8.6 x 10¹⁹ POT) and cosmic rays
- ICARUS has demonstrated excellent detection properties:
 - precise 3D topology and high spatial resolution and accurate ionization measurement
 - good calorimetric energy reconstruction ($\sigma(E)/E = 11\%/\sqrt{E}$ (MeV) + 2% for low-E e , $\sigma(E)/E = 3\%/\sqrt{E}$ (GeV) for e.m. showers, $\sigma(E)/E = 30\%/\sqrt{E}$ (GeV) for hadronic showers)
 - good particle identification via dE/dx and e/γ separation
 - momentum reconstruction of non-contained μ via multiple scattering (Δ p/p ~16% in the 0.4-4 GeV range)
- ICARUS is now part of the SBN program at FNAL as one of the 3 detectors at different baselines to look for sterile neutrinos by 2018

ICARUS detector demonstration

Very long electron mobility:

- New industrial purification methods have been developed to continuously filter and recirculate both in liquid (100 m³/day) and gas (2.5 m³ /hour) phases
- $\tau_e > 7$ ms measured during ICARUS run at LNGS
- $\tau_e > 16$ ms (< 20 ppt O_2 equiv.) with new pump installed

FUNDAMENTAL STEP PAVING THE WAY TO HUGE DETECTORS

Ve identification in ICARUS

• Unique feature of LAr to **distinguish electrons from gammas** reducing important background events

• Identification of electron events with high efficiency

Data from e.m. shower (π^0 decays)

MC single electrons and pair production

 Evolution of dE/dx from a single track to an e.m. shower

ICARUS status

- INFN/CERN/US WA104 program: ICARUS has been moved to CERN late 2014 for overhauling to operate at surface
- ICARUS will be delivered to Fermilab (~April 2017) and operated at the short-baseline neutrino beam by end 2018
- Detector overhauling:
 - New generation of cold cryostats and new purely passive insulation
 - Refurbishing of the cryogenic and purification systems
 - New cathode with better planarity
 - Upgrade of the light detection system: 360 PMTs behind the wire planes
 - New faster, higher-performance readout electronics
- A muon tagging system is designed and constructed in parallel

ICARUS at CERN

New aluminum cold vessel being assembled at CERN

TPC cabling / "cold" biasing circuitry

New purification system efficiency study

New readout board, feed through flange and compact crate

The SBN Program at FNAL

ArgoNeuT @NuMI (→ LArIAT)

- 90 cm long x 40 cm tall x 47 cm drift
 - Active volume: 175 litres
 - 2 wire planes: induction and collection (4 mm wires spacing)
 - No light detection system
- Took data from 09/2009 to 02/2010 at the NuMI beam
 - 2 weeks in neutrino mode & 4 months in antineutrino mode
 - 0.1 20 GeV energy of neutrino beam
- Goals:
 - Measure v-Ar cross-sections
 - Calibration of LAr detectors
 - Study nuclear effects
 - Reconstruction techniques
- Main results:
 - Muon neutrino and antineutrino cross sections
 - Crossing muon analysis
 - Charge recombination
 - Back to back protons
 - Coherent pion production

LArIAT

- Uses the refurbished ArgoNeuT TPC
- Data in **May 2015**: 3 + 5.5 months
- 170 litres LAr, 500 V/cm drift field
- 2 wire planes (±60° orientation, 4 mm pitch)

- Light system:
 - 1 3" + 1 2" cryo PMTs
 - 3 SiPMs
- TPB-coated reflectors to increase the light detection and the uniformity (2.4 pe/ MeV in a 2" PMT)

LArIAT ongoing analysis

- N₂ contaminations
- Calorimetry enhancement
 - Combine charge and light to improve linearity between energy deposited and charge collected
- Cosmic muon Michel electron studies
- π -Ar cross section measurement

SBN: A multi-LAr TPC program

Ciemat

Detector parameters

Detector Component	SBND	MicroBooNE	ICARUS@SBN
TPC Active Volume	4 × 4 × 5 m	2.5 imes2.3 imes10.4 m	3.6 imes 3.9 imes 19.6 m
TPC Active Mass	112	89	476
TPC Drift Time	1.28 ms	1.6 ms	0.95 ms
(at 500V/cm E-field)			
TPC Wire Orientation	0° (collection), =		
Wire/plane spacing	3mm	` 3mm´	3mm
Number of wires	11264	8192	53248
Nominal Drift HV	100 kV	128 kV	75 kV
Analog readout electronics	cold CMOS	cold CMOS	warm
Digital readout electronics	ADC cold, FPGA cold	warm	warm
Light collection	120 8" PMTs	32 8" PMTs	360 8" PMTs
	& scint. bars		

• Synergies with DUNE:

- Modular TPC design with large anode plane assemblies
- Test scintillator bar photon detector design
- Cold electronics readout chain

MicroBooNE @BNB

- 170 ton (89 ton active) LAr TPC neutrino experiment in the Fermilab Booster Neutrino Beam line (at 470 m from start of the BNB)
 - 10.3 m long x 2.3 m tall x 2.5 m drift, 3 mm wire pitch, -128 kV cathode voltage
 - 32 8" cryogenic PMTs behind the anode wires
- Physics **goals**:
 - Address the low-energy electron-like excess observed by MiniBooNE
 - Make high statistics measurements of ~1 GeV neutrino interactions in Ar and study nuclear effects

MicroBooNE status

- · Assembly and installation complete
- Detector filled with ultra pure LAr
- First neutrino beam from the Fermilab Booster accelerator on **Oct 15, 2015** (3.4 x 10 POT taken)
- Stable running with drift HV of 70 kV with e- lifetime of > 6 ms
- Hardware fixes in Oct'16 improved noise level

SBND & ICARUS at SBN program

- Another two LAr detectors being constructed and operated soon
- **SBND**: under design phase
 - 112 ton active volume (4 x 4 x 5 m³)
 - To be located 110 m from the BNB neutrino source
 - To be operational end of 2018
 - Large data sample for neutrino-argon interaction studies in the GeV energy range
- ICARUS: under refurbishment at CERN
 - Was the first large scale LAr TPC to run in a neutrino beam line (CNGS from 2010 to 2013)
 - Will be shipped to Fermilab in 2017

LBNF/DUNE at FNAL

The LBNF/DUNE Project

- Deep Underground Neutrino Experiment: 40 kton LAr TPC far detector at 1480 m depth (4300 mwe) at SURF measuring neutrino spectra at 1300 km in a wide-band high purity ν_{μ} beam with peak flux at 2.5 GeV operating at ~1.2 MW and upgradeable to 2.4 MW
- 4 x 10 kton (fiducial) modules (single and/or dual-phase) with ability to detect LBL oscillations, SN burst neutrinos, nucleon decay, atmospheric vs

LBNF project at FNAL

- Primary 60-120 GeV proton beam from FNAL main injector
- Wide energy spectrum covers the 1st and 2nd oscillation maxima
- Near Detector Hall at 574 m.
- Initially 1.2 MW, upgradable to 2.4 MW

Staged approach to 40 kton

Sanford Underground Research Facility

DUNE Far Detector at SURF

LBNF and DUNE CDR Volume 4: The DUNE Detectors at LBNF (arXiv:1601.02984)

- Four caverns hosting four independent 10 kton (fiducial mass) FD modules
 - Assumed four identical cryostats 15.1 (W) x 14.0 (H) x 62 (L) m
 - · Phase-in approach
 - Allows alternate designs (single vs dual-phase LAr TPCs)
- Installation of #1 module starts in 2022
- Complete TDR should be ready for 2019

LBNF/DUNE construction schedule

DUNE Far Detector

- The **FD** detector design is optimized (in the energy range of few MeV to few GeV) for:
 - pattern recognition
 - energy measurement
 - particle ID
- Expected measurements:
 - neutrino mass hierarchy, CP violation and precision oscillation physics with neutrino and antineutrino beams
 - supernova neutrino bursts (unique sensitivity to $v_e s$)
 - nucleon decay (particularly sensitive to kaon decay modes)
 - atmospheric neutrino oscillations

Single-phase LAr TPC detection principle

- Neutrino interactions in Ar produce charged particles that cause ionization and excitation of Argon
 - High electric field drifts electrons towards finely segmented anode wire planes
 - Excitation of Ar produces prompt scintillation light giving t₀ of the interaction
- Technology pioneered and demonstrated by the ICARUS experiment (the largest LAr TPC ever operated - 600 ton)

Inés Gil Botella - Large Cryogenic Detectors

- Independent views provided by multiple wire orientations (2D position information)
- PMTs detect the light produced providing timing information
- 3D reconstruction of tracks and showers
- Time Projection Chamber

Dual-phase LAr TPC principle

Concept of double-phase LAr TPC (Not to scale)

Ionization signals amplified and detected in gaseous argon above the liquid surface

- Ionizing particle in LAr (2.12 MeV/cm for mip)
- Two measurements:
 - Charge from ionization: tracking and calorimetry
 Double-phase: multiplication in gas to increase gain
 and allow for long drift distances (> 5m) and low
 energy thresholds
 - Scintillation light: primary scintillation (trigger and t₀)
 & secondary scintillation in gas
- Large surface instrumented with PMTs in LAr
- WArP, ArDM, DarkSide, ...

Two proposed technologies

Single-phase

reference design for the CDR

Dual-phase

alternative design for the CDR

Table 1: Parameters of the DUNE Far Detector LArTPC.

Parameter	Value
Module height	$12.0\mathrm{m}$
Module width	$14.5\mathrm{m}$
Module length	$58.0\mathrm{m}$
channels per APA	2,560
APAs per module	150
Active height (APA)	$6.0\mathrm{m}$
Active width (APA)	2.3 m
Drift distance in Liquid Argon	$3.6 \dot{\mathrm{m}}$
Drift velocity	$1.6\mathrm{mm}/\mu\mathrm{s}$
Drift time	$2.25\mathrm{ms}$
# drifts/readout factor	2.4
readout time	$5.4\mathrm{ms}$
bytes/sample	1.5
sample rate	$2.0\mathrm{MHz}$
samples/readout	10,800
# of detector modules	4
Total # of channels	1,536,000

Parameter	Value
Full length	$60.0\mathrm{m}$
Detectors	4.0
channel/CRP	1,920
CRP/detector	80
Active height	12.0 m
Active width	$12.0\mathrm{m}$
Drift distance	$12.0\mathrm{m}$
Drift velocity	$1.6\mathrm{mm}/\mu\mathrm{s}$
Drift time	$7.5\mathrm{ms}$
bytes/sample	1.5
sample rate	$2.5\mathrm{MHz}$
# drifts/readout	1.0
Readout time	$7.5\mathrm{ms}$
Samples/readout	18,750
Total # of channels	614,400

2: Basic parameters of the alternative Far Detector design.

Two detector designs

Single-phase

- 150 Anode Plane Assemblies (APAs)
 - 6 m high x 2.3 m wide
 - embedded photon detection system
 - wrapped wires read out both sides
 - 1 collection & 2 induction wire planes (wire pitch 5 mm)
- 200 Cathode Plane Assemblies (CPAs)
 - 3 m high x 2.3 m wide
- Cathode at -180 kV for 3.6 m drift
- Cold electronics (384,000 channels)

- Hanging field cage and cathode at 600 kV (12 m drift)
- Decoupled PD system (PMTs)
- Finer readout pitch (3 mm), high S/N ratio, lower energy threshold, better pattern recognition, fewer readout channels (153,600), absence of dead material

DUNE Photon Detection Systems

• FD single-phase optical detectors: WLS bars + SiPM

Technique under development

- FD dual-phase optical detectors: PMTs with TPB
 - System well understood

ProtoDUNEs at CERN

European Strategy for Particle Physics (2013)

"CERN should develop a neutrino program to pave the way for a substantial European role in future long-baseline experiments"

CENF: CERN Neutrino Platform

- A unique R&D tests facility of detectors, beams and components
- A new test area is almost finished (EHN1 extension) with charged beams capabilities available in 2017
- **Projects** approved by SPSC:
 - NP01: WA104, ICARUS as far detector for SBN
 - NP02: WA105, demonstrator + engineering prototype for a double phase TPC
 - NP03: PLAFOND, an generic R&D framework
 - NP04: ProtoDUNE, engineering prototype for a single phase TPC
 - NP05: Baby Mind, a muon spectrometer for the WAGASCI experiment at T2K
 - ArgonCube: a modular TPC R&D
- Large **prototyping activities @CENF** on:
 - Large cryostats of a new generation (LNG carrier technology) ~1000 tons LAr
 - Very pure cryogenics at the ppt level, large plants
 - New technologies for LAr Time Proportion Chamber technology (single phase, double phase)
 - Large data sets (similar to LHC-heavy lons)
 - New photon detector technologies (large area SiPM arrays), interesting for other applications (space, dark matter, telescopes,...)
 - Large size detector engineering integration
 - Automatic pattern recognition (new in the community!)
 - Team/Collaboration building in the Neutrino Community

Neutrino Platform at CERN

The DUNE strategy

Single-phase

DUNE **35-t** @Fermilab (2015)

protoDUNE SP @CERN: 300 ton (2016-2019)

DUNE SP @SURF: 10 kton

Ciemat

Inés Gil Botella - Large Cryogenic Detectors

@CERN: 300 ton (2016-2019)

35-ton prototype @FNAL

- First complete system test of DUNE singlephase TPC
- Characteristics
 - 2.5 m x 1.5 m x 2 m active volume
 - 2 drift volumes (long/short)
 - 8 sets of wire planes

- It includes
 - FR4 printed circuit board field cage
 - Wrapped wire planes
 - Cold electronics
 - Light-guide + SiPM photon detectors
 - Triggerless DAQ (continuous readout)
- Status
 - Filled with LAr (Feb 2nd, 2016)
 - Operated Feb-Mar 2016 (2nd phase)
- Results
 - Achieved required LAr purity without initial evacuation
 - TPC/photon detection operated successfully
 - High noise

3x1x1 m³ dual-phase LAr proto

- First large-scale dual phase detector (24 ton LAr in total)
- Assembled in bldg. 182 at CERN
- Installation finished, gas flushing Dec. 2015, LAr filling in Jan. 2017
- Cosmic-ray data taking January-February 2017

Charge Readout System

- Top cap and detector
 - Inés Gil Botella Large Cryogenic Detectors
- Light detection system (5 8" PMTs)
- Options to be tested: TPB on acrylic plates and TPB on the PMT + positive and negative HV bases

3x1x1 m³ inside the cryostat

• First prototype of the cryostat membrane based on LNG technology

ProtoDUNEs @CERN

Construction, installation and operation of **single**- and **dual-phase** large scale prototypes ➤ input to final DUNE FD designs Data taking in 2018 Beamline ProtoDUNE-SP Establishment of construction facilities • Early detection of potential issues with construction methods and detector performance according to current designs

• Calibration of detector response to particle interactions in test beam

Single Phase protoDUNE

GOALS

- Demonstrate engineering design, establish construction facilities and installation plans
- Evaluate cold electronics and DAQ strategies
- Characterize detector performance with full-scale components
- Test beam in 2018 with charged particles: particle ID, reconstruction, e/γ separation...

ProtoDUNE SP

- Engineering prototype of DUNE SP TPC using fullscale detector components
- Active volume: 6 m x 7 m x 7 m
- 6 Anode Plane Assemblies (6 m high x 2.3 m wide)
 - Photon detectors integrated into the APAs
 - 10 PD paddles per APA
- 6 Cathode Plane Assemblies (3 m high x 2.3 m wide)
- Cathode at -180 kV for 3.6 m drift (same drift length as in FD)
- Drift field: 500 V/cm
- 15360 total readout wires in TPC
- Wire spacing: 4.79 mm X plane, 4.67 mm U plane, 4.67 mm V plane, 4.5 mm
- Test-beam with charged particles at CERN

Dual Phase protoDUNE

arXiv:1409.4405

GOALS

- Demonstrate the operation of double-phase LAr detectors at the 100-ton scale
- Test and extrapolate to large scale in an "affordable" way technical solutions:
 - charge readout, long distance drift + HV up to MV scale, purity, UV scintillation light readout
- Test beam in 2018 with charged particles: particle ID, reconstruction, e/γ separation...

ProtoDUNE DP

- Engineering prototype of DUNE DP TPC
 - 1/20 number of channels of 10 kton DUNE (1/40 volume & data size)
- Active volume: 6 x 6 x 6 m
- 6 m x 6 m anode plane made of four 3m x 3m independent readout units
- 6 m vertical drift -> -300 kV cathode voltage
- Drift field: 500 V/cm (extraction field: 2 kV/cm)
- 7680 readout channels
- Validation of construction techniques and operational performance of fullscale DP TPC prototype modules
- Exposure to charged hadrons, muons and electrons beams at CERN (0.5-20 GeV)

Test beam at CERN

- 2 beam lines in preparation
- Commissioning in late 2017
- Needed to test and optimized the readout methods and calorimetric performance
- Goals:
 - Electron, pion and muon reconstruction
 - Electron/ π^0 separation
 - Calorimetry in the GeV range
 - Hadronic secondary interactions to cross check MC models
- The results will help to optimize the final parameters of the DUNE far detector

Conclusions

- Large cryogenic LAr TPC is the technology for future LBL neutrino experiments
- After many years of R&D on smaller prototypes, we are reaching the 1 kton scale
- Small detectors (~100 ton) are being tested in the Booster Neutrino Beam at Fermilab
- Large scale prototypes are being constructed at CERN to be tested with charged particles beam in 2018
 - Single and dual-phase LAr technologies will be compared
- Scalability is possible since prototypes are constructed following a modular approach
- DUNE will represent the realization of very large LAr TPC detectors (40 kton active) for the next generation LBL neutrino experiments

